通用中文 | 依托泊苷 | 通用外文 | Etoposide |
品牌中文 | 品牌外文 | Vepesid | |
其他名称 | 拉司太特 | ||
公司 | Beragena Arzneimittel GmbH(Beragena Arzneimittel GmbH) | 产地 | 德国(Germany) |
含量 | 100mg | 包装 | 10粒/盒 |
剂型给药 | 胶囊 | 储存 | 室温 |
适用范围 | 治疗小细胞肺癌,恶性淋巴瘤,恶性生殖细胞瘤,白血病,对神经母细胞瘤,横纹肌肉瘤,卵巢癌,非小细胞肺癌,胃癌和食管癌等有一定疗效 |
通用中文 | 依托泊苷 |
通用外文 | Etoposide |
品牌中文 | |
品牌外文 | Vepesid |
其他名称 | 拉司太特 |
公司 | Beragena Arzneimittel GmbH(Beragena Arzneimittel GmbH) |
产地 | 德国(Germany) |
含量 | 100mg |
包装 | 10粒/盒 |
剂型给药 | 胶囊 |
储存 | 室温 |
适用范围 | 治疗小细胞肺癌,恶性淋巴瘤,恶性生殖细胞瘤,白血病,对神经母细胞瘤,横纹肌肉瘤,卵巢癌,非小细胞肺癌,胃癌和食管癌等有一定疗效 |
【药品名称】 通用名:依托泊苷注射液
英文名:Etoposide Injection
剂型:注射剂
【成分】 依托泊苷。
化学名称:化学名称为4-去甲基表鬼臼毒素-9-[4,6-O-(R)-亚乙基-β-D-吡喃葡萄糖苷]。
【性状】 本品为淡黄色的澄明液体。
【药理毒理】 本品为细胞周期特异性抗肿瘤药物,作用于DNA拓扑异构酶Ⅱ,形成药物-酶-DNA稳定的可逆性复合物,阻碍DNA修复。实验发现这复合物可随药物的清除而逆转,使损伤的DNA得到修复,降低了细胞毒作用。因此,延长药物的给药时间,可能提高抗肿瘤活性。
【药代动力学】 人体血药浓度的半衰期(t1/2)为7小时(3至12小时)。97%与血浆蛋白结合。由于本品与拓扑异构酶Ⅱ的结合是可逆的,并作用于细胞周期中持续时间较长的S期及G2期,因此血药浓度持续时间长短比峰浓度高低更重要,一般采用静脉滴注,而不用静脉推注。44%至60%由肾排泄(其中67%以原形排泄)。粪便排泄仅占16%。脑脊液中的浓度(给药2至20小时后)为血药浓度的1%至10%。
【适应症】 主要用于治疗小细胞肺癌,恶性淋巴瘤,恶性生殖细胞瘤,白血病,对神经母细胞瘤,横纹肌肉瘤,卵巢癌,非小细胞肺癌,胃癌和食管癌等有一定疗效。
【用法用量】 静脉滴注。将本品需用量用氯化钠注射液稀释,浓度每毫升不超过0.25mg,静脉滴注时间不少于30分钟。实体瘤:一日60至100mg/m2,连续3至5天,每隔3至4周重复用药。白血病:一日60至100mg/m2,连续5天,根据血象情况,间隔一定时间重复给药。小儿常用量:静脉滴注每日按体表面积100至150mg/m2,连用3至4日。
【不良反应】 1.可逆性的骨髓抑制,包括白细胞及血小板减少,多发生在用药后7至14日,20日左右后恢复正常。
2.食欲减退、恶心、呕吐、口腔炎等消化道反应,脱发亦常见。
3.若静脉滴注过速(<30分钟),可有低血压,喉痉挛等过敏反应。
【禁忌】 1.骨髓抑制,白细胞、血小板明显低下者禁用。
2.心、肝肾功能有严重障碍者禁用。3.孕妇禁用。
【注意事项】 1.本品不宜静脉推注,静滴时间速度不得过快,至少半小时,否则容易引起低血压,喉痉挛等过敏反应。
2.不得作胸腔、腹腔和鞘内注射。
3.本品在动物中有生殖毒性及致畸,并可经乳汁排泄,孕妇及哺乳期妇女慎用。
4.用药期间应定期检查周围血象和肝肾功能。
5.本品稀释后立即使用,若有沉淀产生严禁使用。
【孕妇及哺乳期妇女用药】 1.孕妇禁用。
2.哺乳期妇女慎用。
【药物相互作用】 1.由于本品有明显骨髓抑制作用,与其他抗肿瘤药物联合应用时应注意。
2.本品可抑制机体免疫防御机制,使疫苗接种不能激发人体抗体产生。
3.化疗结束后3个月以内,不宜接种病毒疫苗。
4.本品与血浆蛋白结合率高,因此,与其他血浆蛋白结合的药物合用可影响本品排泄。
【规格】 5ml:100mg
【贮藏】 遮光,密闭保存。
Vepesid®
(etoposide) Capsules
WARNINGS
VePesid (etoposide) should be administered under the supervision of a qualified physician experienced in the use of cancer chemotherapeutic agents. Severe myelosuppression with resulting infection or bleeding may occur.
DESCRIPTION
VePesid® (etoposide) (also commonly known as VP-16) is a semisynthetic derivative of podophyllotoxin used in the treatment of certain neoplastic diseases. It is 4'-demethylepipodophyllotoxin 9-[4,6-O-(R)-ethylidene-β-D-glucopyranoside]. It is very soluble in methanol and chloroform, slightly soluble in ethanol, and sparingly soluble in water and ether. It is made more miscible with water by means of organic solvents. It has a molecular weight of 588.56 and a molecular formula of C29H32O13.
VePesid (etoposide) is administered orally. VePesid (etoposide) is available as 50 mg pink capsules. Each liquid-filled, soft gelatin capsule contains 50 mg of etoposide in a vehicle consisting of citric acid, glycerin, purified water, and polyethylene glycol 400. The soft gelatin capsules contain gelatin, glycerin, sorbitol, purified water, and parabens (ethyl and propyl) with the following dye system: iron oxide (red) and titanium dioxide; the capsules are printed with edible ink.
The structural formula is:
|
Indications & Dosage
INDICATIONS
VePesid (etoposide) is indicated in the management of:
Small Cell Lung Cancer-VePesid (etoposide) Capsules in combination with other approved chemotherapeutic agents as first line treatment in patients with small cell lung cancer.
DOSAGE AND ADMINISTRATION
For recommended dosing adjustments in patients with renal impairment see PRECAUTIONS section.
Chemotherapy courses are repeated at 3- to 4-week intervals after adequate recovery from any toxicity.
VePesid (etoposide) Capsules
In small cell lung cancer, the recommended dose of VePesid (etoposide) Capsules is two times the IV dose rounded to the nearest 50 mg (i.e., two times 35 mg/m2/day for 4 days to 50 mg/m2/day for 5 days).
The dosage should be modified to take into account the myelosuppressive effects of other drugs in the combination or the effects of prior x-ray therapy or chemotherapy which may have compromised bone marrow reserve.
Administration Precautions
To minimize the risk of dermal exposure, always wear impervious gloves when handling blisterpacks of individually labeled blisters containing VePesid (etoposide) capsules. This includes all handling activities in clinical settings, pharmacies, storerooms, and home healthcare settings, including during unpacking and inspection, transport within a facility, and dose preparation and administration.
Stability
VePesid (etoposide) Capsules must be stored under refrigeration 2° - 8° C (36° - 46° F). The capsules are stable for 24 months under such refrigeration conditions.
Procedures for proper handling and disposal of anticancer drugs should be considered. Several guidelines on this subject have been published.1-8 There is no general agreement that all of the procedures recommended in the guidelines are necessary or appropriate.
HOW SUPPLIED
VePesidR (etoposide) Capsules
NDC 0015-3091-45-50 mg pink capsules with "BRISTOL 3091" printed in black in blisterpacks of 20 individually labeled blisters, each containing one capsule.
Capsules are to be stored under refrigeration 2°- 8° C (36° - 46° F). DO NOT FREEZE. Dispense in child-resistant containers.
Side Effects
SIDE EFFECTS
The following data on adverse reactions are based on both oral and intravenous administration of VePesid (etoposide) as a single agent, using several different dose schedules for treatment of a wide variety of malignancies.
Hematologic Toxicity
Myelosuppression is dose related and dose limiting, with granulocyte nadirs occurring 7 to 14 days after drug administration and platelet nadirs occurring 9 to 16 days after drug administration. Bone marrow recovery is usually complete by day 20, and no cumulative toxicity has been reported. Fever and infection have also been reported in patients with neutropenia. Death associated with myelosuppression has been reported.
The occurrence of acute leukemia with or without a preleukemic phase has been reported rarely in patients treated with VePesid (etoposide) in association with other antineoplastic agents. (See WARNINGS.)
Gastrointestinal Toxicity
Nausea and vomiting are the major gastrointestinal toxicities. The severity of such nausea and vomiting is generally mild to moderate with treatment discontinuation required in 1% of patients. Nausea and vomiting can usually be controlled with standard antiemetic therapy. Mild to severe mucositis/esophagitis may occur. Gastrointestinal toxicities are slightly more frequent after oral administration than after intravenous infusion.
Allergic Reactions
Anaphylactic-like reactions characterized by chills, fever, tachycardia, bronchospasm, dyspnea, and/or hypotension have been reported to occur in 0.7% to 2% of patients receiving intravenous VePesid (etoposide) and in less than 1% of the patients treated with the oral capsules. These reactions have usually responded promptly to the cessation of the infusion and administration of pressor agents, corticosteroids, antihistamines, or volume expanders as appropriate; however, the reactions can be fatal. Hypertension and/or flushing have also been reported. Blood pressure usually normalizes within a few hours after cessation of the infusion. Anaphylactic-like reactions have occurred during the initial infusion of VePesid (etoposide) .
Facial/tongue swelling, coughing, diaphoresis, cyanosis, tightness in throat, laryngospasm, back pain, and/or loss of consciousness have sometimes occurred in association with the above reactions. In addition, an apparent hypersensitivity-associated apnea has been reported rarely.
Rash, urticaria, and/or pruritus have infrequently been reported at recommended doses. At investigational doses, a generalized pruritic erythematous maculopapular rash, consistent with perivasculitis, has been reported.
Alopecia
Reversible alopecia, sometimes progressing to total baldness, was observed in up to 66% of patients.
Other Toxicities
The following adverse reactions have been infrequently reported: abdominal pain, aftertaste, constipation, dysphagia, asthenia, fatigue, malaise, somnolence, transient cortical blindness, optic neuritis, interstitial pneumonitis/pulmonary fibrosis, fever, seizure (occasionally associated with allergic reactions), Stevens-Johnson syndrome, and toxic epidermal necrolysis, pigmentation, and a single report of radiation recall dermatitis.
Hepatic toxicity, generally in patients receiving higher doses of the drug than those recommended, has been reported with VePesid (etoposide) . Metabolic acidosis has also been reported in patients receiving higher doses.
The incidences of adverse reactions in the table that follows are derived from multiple data bases from studies in 2,081 patients when VePesid (etoposide) was used either orally or by injection as a single agent.
ADVERSE DRUG EFFECT |
PERCENT RANGE OF REPORTED INCIDENCE |
Hematologic toxicity |
|
Leukopenia (less than 1,000 WBC/mm3) |
3-17 |
Leukopenia (less than 4,000 WBC/mm3) |
60-91 |
Thrombocytopenia (less than 50,000 platelets/mm3) |
1-20 |
Thrombocytopenia (less than 100,000 platelets/mm3) |
22-41 |
Anemia |
0-33 |
Gastrointestinal toxicity |
|
Nausea and vomiting |
31-43 |
Abdominal pain |
0-2 |
Anorexia |
10-13 |
Diarrhea |
1-13 |
Stomatitis |
1-6 |
Hepatic |
0-3 |
Alopecia |
8-66 |
Peripheral neurotoxicity |
1-2 |
Hypotension |
1-2 |
Allergic reaction |
1-2 |
Drug Interactions
DRUG INTERACTIONS
High-dose cyclosporin A resulting in concentrations above 2000 ng/mL administered with oral etoposide has led to an 80% increase in etoposide exposure with a 38% decrease in total body clearance of etoposide compared to etoposide alone.
Laboratory Tests
Periodic complete blood counts should be done during the course of VePesid (etoposide) treatment. They should be performed prior to each cycle of therapy and at appropriate intervals during and after therapy. At least one determination should be done prior to each dose of VePesid (etoposide) .
Renal Impairment
In patients with impaired renal function, the following initial dose modification should be considered based on measured creatinine clearance:
Measured Creatinine Clearance |
>50 mL/min |
15-50 mL/min |
etoposide |
100% of dose |
75% of dose |
Subsequent VePesid (etoposide) dosing should be based on patient tolerance and clinical effect.
Data are not available in patients with creatinine clearances <15 mL/min and further dose reduction should be considered in these patients.
Warnings
WARNINGS
Patients being treated with VePesid (etoposide) must be frequently observed for myelosuppression both during and after therapy. Myelosuppression resulting in death has been reported. Dose-limiting bone marrow suppression is the most significant toxicity associated with VePesid (etoposide) therapy. Therefore, the following studies should be obtained at the start of therapy and prior to each subsequent cycle of VePesid (etoposide) : platelet count, hemoglobin, white blood cell count, and differential. The occurrence of a platelet count below 50,000/mm3 or an absolute neutrophil count below 500/mm3 is an indication to withhold further therapy until the blood counts have sufficiently recovered.
Pregnancy
VePesid (etoposide) can cause fetal harm when administered to a pregnant woman. Etoposide has been shown to be teratogenic in mice and rats.
In rats, an intravenous etoposide dose of 0.4 mg/kg/day (about 1/20th of the human dose on a mg/m2 basis) during organogenesis caused maternal toxicity, embryotoxicity, and teratogenicity (skeletal abnormalities, exencephaly, encephalocele, and anophthalmia); higher doses of 1.2 and 3.6 mg/kg/day (about 1/7th and 1/2 of human dose on a mg/m2basis) resulted in 90 and 100% embryonic resorptions. In mice, a single 1.0 mg/kg (1/16th of human dose on a mg/m2 basis) dose of etoposide administered intraperitoneally on days 6, 7, or 8 of gestation caused embryotoxicity, cranial abnormalities, and major skeletal malformations. An I.P. dose of 1.5 mg/kg (about 1/10th of human dose on a mg/m2 basis) on day 7 of gestation caused an increase in the incidence of intrauterine death and fetal malformations and a significant decrease in the average fetal body weight.
Women of childbearing potential should be advised to avoid becoming pregnant. If this drug is used during pregnancy, or if the patient becomes pregnant while receiving this drug, the patient should be warned of the potential hazard to the fetus.
VePesid (etoposide) should be considered a potential carcinogen in humans. The occurrence of acute leukemia with or without a preleukemic phase has been reported in rare instances in patients treated with etoposide alone or in association with other neoplastic agents. The risk of development of a preleukemic or leukemic syndrome is unclear. Carcinogenicity tests with VePesid (etoposide) have not been conducted in laboratory animals.
Precautions
PRECAUTIONS
General
In all instances where the use of VePesid (etoposide) is considered for chemotherapy, the physician must evaluate the need and usefulness of the drug against the risk of adverse reactions. Most such adverse reactions are reversible if detected early. If severe reactions occur, the drug should be reduced in dosage or discontinued and appropriate corrective measures should be taken according to the clinical judgment of the physician. Reinstitution of VePesid (etoposide) therapy should be carried out with caution, and with adequate consideration of the further need for the drug and alertness as to possible recurrence of toxicity.
Patients with low serum albumin may be at an increased risk for etoposide associated toxicities.
Carcinogenesis, Mutagenesis, Impairment of Fertility
(see WARNINGS)
Etoposide has been shown to be mutagenic in Ames assay.
Treatment of Swiss-Albino mice with 1.5 mg/kg I.P. of VePesid (etoposide) on day 7 of gestation increased the incidence of intrauterine death and fetal malformations as well as significantly decreased the average fetal body weight. Maternal weight gain was not affected.
Irreversible testicular atrophy was present in rats treated with etoposide intravenously for 30 days at 0.5 mg/kg/day (about 1/16th of the human dose on a mg/m2 basis).
Pregnancy
Pregnancy Category D
See WARNINGS.
Nursing Mothers
It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from VePesid (etoposide) , a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.
Pediatric Use
Safety and effectiveness in pediatric patients have not been established.
Geriatric Use
Of more than 600 patients in 4 clinical studies in the NDA databases who received VePesid or etoposide phosphate in combination with other chemotherapeutic agents for the treatment of small cell lung cancer (SCLC), about one-third were older than 65 years. When advanced age was determined to be a prognostic factor for response or survival in these studies, comparisons between treatment groups were performed for the elderly subset. In the one study (etoposide in combination with cyclophosphamide and vincristine compared with cyclophosphamide and vincristine or cyclophosphamide, vincristine, and doxorubicin) where age was a significant prognostic factor for survival, a survival benefit for elderly patients was observed for the etoposide regimen compared with the control regimens. No differences in myelosuppression were seen between elderly and younger patients in these studies except for an increased frequency of WHO Grade III or IV leukopenia among elderly patients in a study of etoposide phosphate or etoposide in combination with cisplatin. Elderly patients in this study also had more anorexia, mucositis, dehydration, somnolence, and elevated BUN levels than younger patients.
In 5 single-agent studies of etoposide phosphate in patients with a variety of tumor types, 34% of patients were age 65 years or more. WHO Grade III or IV leukopenia, granulocytopenia, and asthenia were more frequent among elderly patients.
Postmarketing experience also suggests that elderly patients may be more sensitive to some of the known adverse effects of etoposide, including myelosuppression, gastrointestinal effects, infectious complications, and alopecia.
Although some minor differences in pharmacokinetic parameters between elderly and nonelderly patients have been observed, these differences were not considered clinically significant.
Etoposide and its metabolites are known to be substantially excreted by the kidney, and the risk of adverse reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function (see PRECAUTIONS: Renal Impairment for recommended dosing adjustments in patients with renal impairment).
Overdosage & Contraindications
OVERDOSE
No proven antidotes have been established for VePesid (etoposide) overdosage.
CONTRAINDICATIONS
VePesid (etoposide) is contraindicated in patients who have demonstrated a previous hypersensitivity to etoposide or any component of the formulation.
Clinical Pharmacology
CLINICAL PHARMACOLOGY
VePesid (etoposide) has been shown to cause metaphase arrest in chick fibroblasts. Its main effect, however, appears to be at the G2 portion of the cell cycle in mammalian cells. Two different dose-dependent responses are seen. At high concentrations (10 µg/mL or more), lysis of cells entering mitosis is observed. At low concentrations (0.3-10 µg/mL), cells are inhibited from entering prophase. It does not interfere with microtubular assembly. The predominant macromolecular effect of etoposide appears to be the induction of DNA strand breaks by an interaction with DNA topoisomerase II or the formation of free radicals.
Pharmacokinetics
On intravenous administration, the disposition of etoposide is best described as a biphasic process with a distribution half-life of about 1.5 hours and terminal elimination half-life ranging from 4 to 11 hours. Total body clearance values range from 33 to 48 mL/min or 16 to 36 mL/min/m2 and, like the terminal elimination half-life, are independent of dose over a range of 100 to 600 mg/m2. Over the same dose range, the areas under the plasma concentration versus time curves (AUC) and the maximum plasma concentration (Cmax) values increase linearly with dose. Etoposide does not accumulate in the plasma following daily administration of 100 mg/m2 for 4 to 5 days.
The mean volumes of distribution at steady state fall in the range of 18 to 29 liters or 7 to 17 L/m2. Etoposide enters the CSF(cerebrospinal fluid) poorly. Although it is detectable in CSF and intracerebral tumors, the concentrations are lower than in extracerebral tumors and in plasma. Etoposide concentrations are higher in normal lung than in lung metastases and are similar in primary tumors and normal tissues of the myometrium. In vitro, etoposide is highly protein bound (97%) to human plasma proteins. An inverse relationship between plasma albumin levels and etoposide renal clearance is found in children. In a study determining the effect of other therapeutic agents on the in vitro binding of 14C-etoposide to human serum proteins, only phenylbutazone, sodium salicylate, and aspirin displaced protein-bound etoposide at concentrations achieved in vivo.
Etoposide binding ratio correlates directly with serum albumin in patients with cancer and in normal volunteers. The unbound fraction of etoposide significantly correlated with bilirubin in a population of cancer patients. Data have suggested a significant inverse correlation between serum albumin concentration and free fraction of etoposide (see PRECAUTIONS).
After intravenous administration of 14C-etoposide (100-124 mg/m2), mean recovery of radioactivity in the urine was 56% of the dose at 120 hours, 45% of which was excreted as etoposide; fecal recovery of radioactivity was 44% of the dose at 120 hours.
In children, approximately 55% of the dose is excreted in the urine as etoposide in 24 hours. The mean renal clearance of etoposide is 7 to 10 mL/min/m2 or about 35% of the total body clearance over a dose range of 80 to 600 mg/m2. Etoposide, therefore, is cleared by both renal and nonrenal processes, i.e., metabolism and biliary excretion. The effect of renal disease on plasma etoposide clearance is not known.
Biliary excretion of unchanged drug and/or metabolites is an important route of etoposide elimination as fecal recovery of radioactivity is 44% of the intravenous dose. The hydroxy acid metabolite [4'-demethylepipodophyllic acid-9-(4,6-O-(R)-ethylidene-β-D-glucopyranoside)], formed by opening of the lactone ring, is found in the urine of adults and children. It is also present in human plasma, presumably as the trans isomer. Glucuronide and/or sulfate conjugates of etoposide are also excreted in human urine. Only 8% or less of an intravenous dose is excreted in the urine as radiolabeled metabolites of 14C-etoposide. In addition, O-demethylation of the dimethoxyphenol ring occurs through the CYP450 3A4 isoenzyme pathway to produce the corresponding catechol.
After either intravenous infusion or oral capsule administration, the Cmax and AUC values exhibit marked intra- and inter-subject variability. This results in variability in the estimates of the absolute oral bioavailability of etoposide oral capsules.
Cmax and AUC values for orally administered etoposide capsules consistently fall in the same range as the Cmax and AUC values for an intravenous dose of one-half the size of the oral dose. The overall mean value of oral capsule bioavailability is approximately 50% (range, 25-75%). The bioavailability of etoposide capsules appears to be linear up to a dose of at least 250 mg/m2.
There is no evidence of a first-pass effect for etoposide. For example, no correlation exists between the absolute oral bioavailability of etoposide capsules and nonrenal clearance. No evidence exists for any other differences in etoposide metabolism and excretion after administration of oral capsules as compared to intravenous infusion.
In adults, the total body clearance of etoposide is correlated with creatinine clearance, serum albumin concentration, and nonrenal clearance. Patients with impaired renal function receiving etoposide have exhibited reduced total body clearance, increased AUC and a lower volume of distribution at steady state (see PRECAUTIONS). Use of cisplatin therapy is associated with reduced total body clearance. In children, elevated serum SGPT levels are associated with reduced drug total body clearance. Prior use of cisplatin may also result in a decrease of etoposide total body clearance in children.
Although some minor differences in pharmacokinetic parameters between age and gender have been observed, these differences were not considered clinically significant.